Search
  • Infinitum Health Team

Seaweed extract effectively inhibits COVID-19 in vitro, study finds

Updated: Sep 10



Another remarkable study in the prestigious journal, Cell Discovery, highlights one of our favorite extracts - fucoidan.  This is found in Laminaria japonica (aka Saccharina japonica) included in our Infinimin® brand!


In a test of antiviral effectiveness against the virus that causes the novel coronavirus (COVID-19), an extract from edible seaweeds substantially outperformed remdesivir, the current standard antiviral used to combat the disease, according to new research published in the journal Cell Discovery. The study found heparin, a common blood thinner, and a heparin variant stripped of its anticoagulant properties, performed on par with remdesivir in inhibiting SARS-CoV-2 infection in mammalian cells.


The spike protein on the surface of SARS-CoV-2 latches onto the ACE-2 receptor, a molecule on the surface of human cells. Once secured, the virus inserts its own genetic material into the cell, hijacking the cellular machinery to produce replica viruses. But the virus could just as easily be persuaded to lock onto a decoy molecule that offers a similar fit. The neutralized virus would be trapped and eventually degrade naturally.

Previous research has shown this decoy technique works in trapping other viruses, including dengue, Zika, and influenza A. 


The study tests antiviral activity in three variants of heparin—heparin, trisulfated heparin, and a non-anticoagulant low molecular weight heparin—and two fucoidans—RPI-27 and RPI-28—extracted from seaweed. All five compounds are long chains of sugar molecules known as sulfated polysaccharides.


The researchers performed a dose response study known as an EC50 , shorthand for the effective concentration of the compound that inhibits 50% of viral infectivity, with each of the five compounds on mammalian cells. For the results of an EC50, which are given in a molar concentration, a lower value signals a more potent compound.


RPI-27 yielded an EC50 value of approximately 83 nanomolar, while a similar previously published and independent in vitro test of remdesivir on the same mammalian cells yielded an EC50 of 770 nanomolar. Heparin yielded an EC50 of 2.1 micromolar, or about one-third as active as remdesivir, and a non-anticoagulant analog of heparin yielded an EC50 of 5.0 micromolar, about one-fifth as active as remdesivir.


A separate test found no cellular toxicity in any of the compounds, even at the highest concentrations tested.



In studying SARS-CoV-2 sequencing data, the researchers recognized several motifs on the structure of the spike protein that promised a fit compatible with heparin, a result borne out in the binding study. The spike protein is heavily encrusted in glycans, an adaptation that protects it from human enzymes which could degrade it and prepares it to bind with a specific receptor on the cell surface.


Since these polysaccharides show promising antiviral activity in vitro and low cytotoxicity, we suggest that they may have promising clinical use. Along these lines, SARSCoV- 2 has been found to infect a wide range of tissues that possess sufficient ACE2 levels, including the nose and the gastrointestinal tract15. Potential routes of delivery

of these non-anticoagulant polysaccharide candidates, including the fucoidans (RPI-27, and RPI-28) and the TriS-heparin, could be through a nasal spray, metered dose inhaler, or oral delivery. This is distinct from remdesivir, which must be delivered intravenously.


Indeed, when taken orally, fucoidan, isolated from edible sulfated seaweed polysaccharides, are considered as “Generally Recognized as Safe” and heparin, an approved drug, is not orally bioavailable, making fucoidans a more effective, efficient, affordable, and scalable option for potential antiviral capability.


"It's a very complicated mechanism that we quite frankly don't know all the details about, but we're getting more information," said Jonathan Dordick, PhD, the lead researcher and a professor of chemical and biological engineering at Rensselaer Polytechnic Institute, in a statement. "One thing that's become clear with this study is that the larger the molecule, the better the fit. The more successful compounds are the larger sulfated polysaccharides that offer a greater number of sites on the molecules to trap the virus."


---------------------


As always, more research is needed, but some great recent evidence at the in vitro level (cell level)!!


Incredible "re" discovery of the antiviral capability of our seaweed extracts! We are excited the world is catching on!!


Here's to your health,


Infinitum Health


--------------


Reference


Kwon et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discovery (2020) 6:50


(pdf available below for download)


Sulfated polysaccharides effectively inh
.
Download • 2.17MB

Guiry, M.D.; Guiry, G.M. (2008). "'Saccharina japonica new taxonomic name for Laminaria'". AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.


World Register of Marine Species (WoRMS)

http://www.marinespecies.org/aphia.php?p=taxdetails&id=847543


The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue?


Fucoidan (from seaweed) as potential inhibitor of Corona, HIV-1, Herpes, and other envelope viruses?


Seaweed supplementation to help prevent flu virus


Seaweed helps prime immune systems naturally and help with vaccines

1,901 views
  • Facebook Social Icon
  • Pinterest Social Icon
  • Twitter Social Icon
  • LinkedIn Social Icon
  • YouTube Social  Icon

Copyright  2020.  All rights reserved.  Infinitum Health, LLC.  *These statements have not been evaluated by the Food and Drug Administration (FDA) or Federal Trade Commission (FTC).  These products are not intended to diagnose, treat, cure or prevent any disease.  This web site (inclusive of blog articles, email marketing, labeling on products and any reference links) are not to be used as a substitute for medical advice, diagnosis or treatment of any health condition or problem. Users of this web site (inclusive of blog articles, email marketing, labeling on products and any reference links) should not rely on information provided for their own health problems.  Any questions regarding your own health should be addressed to your physician or other healthcare provider.  We provide the research and information and request customers to read through it thoroughly and educate themselves to aid in making an informed and safe decision to buy.   US Patents: 14-454548, 62006732, 89065289, 89078900